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Abstract
We analyze combinatorial optimization problems over a pair of random point sets (X, )) in R of
equal cardinal. Typical examples include the matching of minimal length, the traveling salesperson
tour constrained to alternate between points of each set, or the connected bipartite r-regular graph
of minimal length. As the cardinal of the sets goes to infinity, we investigate the convergence of such
bipartite functionals. |

1 Introduction

This work pertains to the probabilistic study of Euclidean combinatorial optimization problems. The
starting point in this field is the celebrated theorem of Beardwood, Halton and Hammersley [2] about
the traveling salesperson problem. Its ensures that given a sequence (X;);>1 of independent random
variables on R?, d > 2 with common law z of bounded support, then almost surely

lim ne 'T(Xy,. .., X,) :ﬂd/flﬁ.
n—oo

Here (4 is a constant depending only on the dimension, f is the density of the absolutely continuous
part of p and

n—1
T(Xy,...,X,) = inf Xo(ir1) — Xo@ Xo)y — Xo(n
(X1, Xn) alélsn;| (i+1) @+ 1 Xoq) ()]

is the length (for the canonical Euclidean distance) of the shorstest tour through the points X, ..., X,,.
In the above formula S,, stands for the set of permutations of {1,2,...,n}. Very informally, this result
supports the following interpretation: when the number of points n is large, for u almost every =z, if
the salesperson is at X; = x then the distance to the next point in the optimal tour is comparable to
B(d)(nf(x))~ Y% if f(x) > 0 and of lower order otherwise. This should be compared to the fact that the
distance from X; = = to {X;,j < n and j # ¢} also stabilizes at the same rate.

Later, Papadimitriou [9] and Steele [14] have initiated a general theory of Euclidean functionals
F({X1,...,X,}) that satisfy almost sure limits of this type. We refer the reader to the monographs of
Steele [15] and Yukich [19] for a full treatment of this now mature theory, and present a short outline.
It is convenient to consider multisets rather than sets, so throughout the paper {z1,...,z,} will stand
for a multiset (the elements are unordered but may be repeated). The umbrella theorem in [I9] puts
forward the following three features of a functional F on finite multisets of R:

e Fis 1-homogeneous if it is translation invariant and dilation covariant:
Fla+ AX) = AF(X)
for all finite multisets X, all @ € R? and A € RT.

e The key assumption is subadditivity: F' is subadditive if there exists a constant C' > 0 such that
for all multisets X', ) in the unit cube [0, 1]¢,

F(XUY)<F(X)+F(Q)+C.
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As noted by Rhee in [I2], this assumption implies that there is another constant C’ such that for
all multiset in [0, 1]¢,
|F(X)] < O (card(X))' 7. (1)

1

Hence the worst case for n points is at most in n —7 and the above mentioned theorems show that

the average case is of the same order.

e The third important property is smoothness (or regularity). A functional F' on finite multisets R?
is smooth if there is a constant C” such that for all multisets X, ), Z in [0,1]%, it holds

F(XUY) = P UZ)| < 0" (card(¥)'~F +eard(2)' 1)

These three properties are enough to show upper limits for F', on the model of the Beardwood, Halton,
Hammersley theorem. To have the full limits, the umbrella theorem of [19] also requires to check a few
more properties of a so-called boundary functional associated with F'.

Next, let us present a classical optimization problem which does not enter the above picture. Given
two multi-subsets of R? with the same cardinality, X = {X1,..., X, } and Y = {Y1,...,Y,,}, the cost of
the minimal bipartite matching of X and ) is defined as

Mi(X = mi X =Y, .
1( ;y) grelgizzzl| 7 a(z)'a

where the minimum runs over all permutations of {1, ...,n}. It is well-known that n =My ({ X}, {Vi} )
coincides with the power of the L;-Wasserstein distance between the empirical distributions

W1(%Z5X“%Z<5Yi),

hence it is easily seen to tend to 0, for example when p has bounded support. Recall that given two
finite measures 1, g1 on R? with the same total mass,

W) = inf / & — gl dn(z, y),
m€ll(p1,p2) JRd xR

where TI(j11, u2) is the set of measures on (R?)? having j; as first marginal and po as second marginal
(see e.g. [0, 18] for more background). Note that for all finite multisets X, ) in [0, 1]¢ with card(X) =
card()),

My (X,Y) < Vdcard(X),

and equality holds for some well-chosen configurations of any cardinal (all elements in X" at (0, ---,0) and
all elements in ) at (1,---,1)). Hence, an interesting feature of L (as well as others bipartite Euclidean
optimization functionals) is that the growth bound assumption () fails, hence it is not subadditive in
the above sense. However Dobrié¢ and Yukich have stated the following theorem:

Theorem 1 ([]). Letd > 3 be an integer. Assume that i is a probability measure on R having a bounded
support. Consider mutually independent random variables (X;)i>1 and (Y;);j>1 having distribution p.
Then, almost surely,

lmnd My ({X1, .., Xo 1 {Va, ., Vo)) = ﬂl(d)/ Fha
n R4

where f(x)dx is the absolutely continuous part of p and 1(d) is a constant depending only on the
dimension d.

When f is not the uniform measure on the unit cube, there is an issue in the proof of [4] that
apparently cannot be easily fixed (the problem lies in their Lemma 4.2 which is used for proving that
the liminf is at least [1(d) fRd f%). In any case, the proof of Dobri¢ and Yukich is very specific to
the bipartite matching as it uses from the start the Kantorovich-Rubinstein dual representation of the



optimal transportation cost. It is not adapted to a general treatment of bipartite functionals. The
starting point of our work was recent paper of Boutet de Monvel and Martin [3] which (independently of
[4]) establishes the convergence of the bipartite matching for uniform variables on the unit cube, without
using the dual formulation of the transportation cost. Building on their approach we are able to propose
a soft approach of bipartite functionals, based on appropriate notions of subadditivity and regularity.
These properties allow to establish upper estimates on upper limits. In order to deal with lower limits we
adapt to the bipartite setting the ideas of boundary functionals exposed in [I9]. We are able to explicitly
construct such functionals for a class of optimization problems involving families of graphs with good
properties, and to establish full convergence for absolutely continuous laws. Finally we introduce a new
notion of inverse subadditivity which allows to deal with singular parts.

This viewpoint sheds a new light on the result of Dobri¢ and Yukich, that we extend in other respects,
by considering power distance costs, and unbounded random variables satisfying certain tail assumptions.
Note that in the classical theory of Euclidean functionals, the analogous question for unbounded random
variables was answered in Rhee [I3] and generalized in [19)].

Let us illustrate our results in the case of the bipartite matching with power distance cost : given
p > 0 and two multi-subsets of RY, X = {Xy,...,X,,} and Y = {Y1,...,Y,}, define

M,(X,) —man|X Yo,

UGn,

where the minimum runs over all permutations of {1,...,n}. Note that we have the same result for
the bipartite travelling salesperson problem, and that our generic approach puts forward key properties
that allow to establish similar facts for other functionals. As mentioned in the title, our results apply
to relatively high dimension. More precisely, if the length of edges are counted to a power p, our study
applies to dimensions d > 2p only.

Theorem 2. Let 0 < 2p < d. Let p be a probability measure on R% with absolutely continuous part

f(x)dz. We assume that for some o > dgp,

/|x|”‘du(z) < +o00.

Consider mutually independent random variables (X;);>1 and (Yj)j>1 having distribution . Then there
are positive constants B,(d), B,(d) depending only on (p,d) such that the following convergence holds
almost surely

1imsupn§_1Mp({X1, ce X b AN, ,Yn}) ﬁp(d)/ fl—ﬁ’
n Rd

1imninfn§_1Mp({X1, X YY)
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Moreover

limn = M, ({ X1, Xn b, (Y1, Ya)) zﬁp(d)/ Fi-k
n R4

provided one of the following hypothesis is verified:
o [ is the uniform distribution over a bounded set Q C RY with positive Lebesque measure.

e de{l1,2}, pe (0,d/2) ord >3, pe (0,1], and f is up to a multiplicative constant the indicator
function over a bounded set Q0 C R with positive Lebesque measure.

Our constant §’(d) has an explicit expression in terms of the cost of an optimal boundary matching
for the uniform measure on [0,1]% (see Lemma 7). We strongly suspect that 3,(d) = f;,(d) but we have

not been able to solve this important issue. Also, assuming only a > %gp, we can establish convergence
in probability. A basic concentration inequality implies that if ;1 has bounded support the convergence
holds also in L? for all ¢ > 1.

The paper is organized as follows: Section [2] presents the key properties for bipartite functionals (ho-
mogeneity, subadditivity and regularity) and gathers useful preliminary statements. Section[3establishes



the convergence for uniform samples on the cube. Section @ proves upper bounds on the upper limits.
These two sections essentially rely on classical subadditive methods, nevertheless a careful analysis is
needed to control the differences of cardinalities of the two samples in small domains. In Section Bl we
introduce some examples of bipartite functionals. The lower limits are harder to prove and require a
new notion of penalized boundary functionals. It is however difficult to build an abstract theory there,
so in Section [6] we will first present the proof for bipartite matchings with power distance cost, and
put forward a few lemmas which will be useful for other functionals. We then check that for a natural
family of Euclidean combinatorial optimization functionals defined in §5.3] the lower limit also holds.
This family includes the bipartite traveling salesman tour. Finally, Section [7] mentions possible variants
and extensions.

2 A general setting
Let My be the set of all finite multisets contained in R¢. We consider a bipartite functional:
L: Mgx Mg— R,
Let p > 0. We shall say that L is p-homogeneous if for all multisets X,), all @ € R? and all A > 0,
Lia+ AX,a+ \Y) = NPL(X,)). (Hp)

Here a + Mz, ...,z } is by definition {a+ Ax1,...,a+ Azk}. For shortness, we call the above property
(H,). Note that a direct consequence is that L((),0) = 0.

The functional L satisfies the regularity property (R,) if there exists a number C' such that for all
multisets X', Y, X1, V1, Ao, Vo, denoting by A the diameter of their union, the following inequality holds

L(XUX, YU < L(XU Xy, YUIs) + CAP (card(Xl) + card(Xy) + card(Qh ) + card(yg)). (Rp)

The above inequality implies in particular an easy size bound: L(X,)Y) < CAP(card(X')+ card())) when
L(0,0) = 0.

Eventually, L verifies the subbaditivity property (S,) if there exists a number C such that for every
k > 2 and all multisets (X;,);)%_,, denoting by A the diameter of their union, the following inequality
holds

k k k k
L( U X;, U Jii) < Z L(X;,Y;) + CAP Z (1 + ’card(Xi) — card(yi)’). (Sp)
i=1 =1 i=1 i=1

Remark 1. A less demanding notion of ”geometric subadditivity” could be introduced by requiring the
above inequality only when the multisets X; U ); lie in disjoint parallelepipeds (see [19] where such a
notion is used in order to encompass more complicated single sample functionals). It is clear from the

proofs that some of our results hold assuming only geometric subadditivity (upper limit for bounded
absolutely continuous laws for example). We will not push this idea further in this paper.

We will see later on that suitable extensions of the bipartite matching, of the bipartite traveling
salesperson problem, and of the minimal bipartite spanning tree with bounded maximal degree satisfy
all these properties. Our main generic result on bipartite functionals is the following.

Theorem 3. Let d > 2p > 0 and let L be a bipartite functional on R with the properties (H,), (Rp)
and (S,). Consider a probability measure p on R? such that there exists o > d‘*%gp with

/|x|ad,u(ac) < foo.

Consider mutually independent random variables (X;)i>1 and (Yj)j>1 having distribution p. Let f be a
density function for the absolutely continuous part of u, then, almost surely,

L({X, . - Xn , Yv"'vyn p
lim sup ({45, : l}p{ ! ) SﬂL/fl 4,
n—00 n-—d



for some constant 81, depending only on L. Moreover, if u is the uniform distribution over a bounded
set Q0 with positive Lebesgue measure, then there is equality: almost surely,

LUEXy, - Xo b V1, Y, .
fim 20X 1} p{ ! H = BLVol()4.
n—oo n-—4d

Beyond uniform distributions, lower limits are harder to obtain. In Section[6, we will state a matching
lower bound for a subclass of bipartite functionals which satisfy the properties (H,), (R,) and (S,) (see
the forthcoming Theorem [BG] and, for the bipartite traveling salesperson tour, Theorem [B7]).

Remark 2. Let B(1/2) = {x € R?: |z| < 1/2} be the Euclidean ball of radius 1/2 centered at the origin.

It is immediate that the functional L satisfies the regularity property (R,) if it satisfies property (H,)
and if for all multisets X', Y, X1, V1, Xa, Vo in B(1/2),

LXUX,YUY) < LXUX, Y UYs)+ C(card(Xl) + card(Xy) + card()1) + card(yg)). (R)

Similarly, L will enjoy the subbaditivity property (S,) if it satisfies property (H,) and if for every k > 2
and all multisets (X;, V)% | in B(1/2),

k

L( Q X, Q yi) < iL(Xiayi) + CZ (1 + |card(X;) — card(yi)’)_ (S)

i=1

The set of assumptions (H,), (Rp), (Sp) is thus equivalent to the set of assumptions (H,), (R), (S).

2.1 Consequences of regularity
2.1.1 Poissonization

For technical reasons, it is convenient to consider the poissonized version of the above problem. Let
(Xi)i>1, (Yi)i>1 be mutually independent variables with distribution p. Considering independent vari-
ables Ny, N with Poisson distribution P(n), the randoms sets {Xi,...,Xn,} and {Y7,...,Yn,} are
independent Poisson point processes with intensity measures nu. For shortness, we set

Linp) == L({X1, ..., Xn 1 {Va, o, Y ).

When du(z) = f(z)dx we write L(nf) instead of L(nu). Note that whenever we are dealing with
Poisson processes, n € (0,+00) is not necessarily an integer. More generally L(r) makes sense for any
finite measure, as the value of the functional L for two independent Poisson point processes with intensity
V.

Assume for a moment that the measure 1 has a bounded support, of diameter A. The regularity
property ensures that

DXy X b AV, Yo ) = LK, X Y- Vi ) < CAP(IN = nf + [Nz — nl).
Note that E|N;—n| < (1[43(1\71-771)2)1/2 = Var(N;) = y/n. Hence the difference between EL({ X} 1, {Y;}™ )
and EL(nu) is at most a constant times \/n = o(n'~P/¢) when d > 2p. Hence in this case, the orig-

inal quantity and the poissonized version are the same in average at the relevent scale n'=?/¢. The
boundedness assumption can actually be relaxed. To show this, we need a lemma.

Lemma 4. Let o > 0, n > 0 and let p be a probability measure on RY such that for all t > 0,
u({:c; |x] > t}) < ct™® Let X, Y be two independent Poisson point processes of intensity nu and
T, =max{|Z|: Z € X UY}. Then, for all 0 < v < « there exists a constant K = K(c,a,7) such that
for alln > 1,

E[T7)7 < Kn=.
Moreover the same conclusion holds if X = {X1,...,X,}, Y ={Y1,...,Y,} are two mutually indepen-
dent sequences of n variables with distribution u.



t—“. We start

Proof. Fort >0, let A; = {x € R?: |z| >t} and g(t) = fAt dp. By assumption, u(A;) < ¢
— @)2 — e 2np(Ar)

with the Poisson case. Since X, ) are independent, we have P(T;, < t) = P(X N A,
Therefore, using 1 — e~ < min(1, u),

R[T)] = 7/ t7TP(T, > t)dt
0

o0
= 7/ 771 — e 2mn(Ad gt
0
nt/« oo
< 7/ ﬂ—ldt+/ 2net’ = dt
0 nl/o
— n’Y/a + L
=7

nv/a’

For the second case, since P(T;, > t) = 1—(1—u(A;))?" < min(1,2nu(A;)) the same conclusion holds. [

Proposition 5. Let d > 2p > 0. Let p1 be a probability measure on R? such that [ |z|* du(z) < +oo for
some a > dQ—_d%). Let (X;)i>1, (Yi)i>1 be mutually independent variables with distribution u. If L satisfies
the regularity property (R,) then

i BLUXD i, (Vi) — EL(np)

n—r 00 n d

Remark 3. We have not yet proved the finiteness of the above integrals. This will be done later. The
proof below show that the expectations are finite at the same time. So the above statement is established
with the convention co — co = 0.

Proof. Let N1 and Ns be Poisson random variables with mean value n. Let T = max{|Z| : Z €
{X1, -, XN UV, Y} and S = max{|Z| : Z € {X1, -, X} U{Yy,---,Y,}}, with the
convention that the maximum over an empty set is 0. The regularity property ensures that

IL{X1, o X (Vi Yo d) = DX, X 1 Vi, Yan D) | < C(T + 8)P (INy = n| + [Ns —nl).

Taking expectation gives, using Cauchy-Schwarz inequality and the bound (a+b)? < max(1,2971)(a?4-b%)
valid for a,b,q > 0

|EL({X1,..., Xn}, {V1,.. ., Ya}) = L({X1, ... X 1 {0, -, Y ) |

< (BT + E[5]) " (BN — nf?) + B[N, = nf?))
= c,V2n (E[T?p] + E[s%]f

Since o > 2p, by Lemma @, for some ¢ > 0 and all n > 1, E[T?] < en?/® and E[S?"] < cn?!/®. Hence
the above difference of expectations is at most a constant times n§+%, which is negligeable with respect
to n!~@ since « is assumed to be large enough. O

2.1.2 Approximations

Proposition 6. Assume that a bipartite functional L satisfies the reqularity property (Rp). Let m,n >0
and p be a probability measure with support included in a set Q). Then

EL(np) < EL(mp) + Cdiam(Q)?|m — n|.

Proof. Assume n < m (the other case is treated in the same way). Let (X;)i>1, (Yi)i>1, N1, No, K1, Ko
be mutually independent random variables, such that for all ¢ > 1, X; and Y; have law u, and for
j € {1,2}, the law of N; is P(n) and the law of K is P(m—mn). Then M; = N, + K; is P(m)-distributed.
Then {X;,..., Xy, } and {Y3,...,Yy,} are independent Poisson point processes of intensity nu, while



Then {X1,...,Xa,} and {Y7,...,Y), } are independent Poisson point processes of intensity mpu. By
the regularity property,

L{Xy, - X b AVe oY) < DX - X 1 AV - Yiver i, }) + Cdiam(Q) (K + Ko).
Taking expectations gives the claim. (|

Applying the above inequality for m = 0 gives a weak size bound on EL(v).

Corollary 7. Assume that L satisfies (Rp) and L(0,0) =0 (a consequence of e.g. (H,)), then if v is a
finite measure with support included in a set Q,

EL(v) < Cdiam(Q)" v(Q).
Recall the total variation distance of two probability measures on R? is defined as
drv(p, 1) = sup{|u(A) — u'(A)| : A Borel set of R4},

Proposition 8. Assume that L satisfies (R,). Let pi, i’ be two probability measures on R? with bounded
supports. Set A be the diameter of the union of their supports. Then

EL(nu) < EL(ny') + 4CAP ndpy (p, p').

Proof. The difference of expectations is estimated thanks to a proper coupling argument. Let 7 be
a probability measure on R% x R? having p as its first marginal and ' as its second marginal. We
consider mutually independent random variables Ny, Na, (X;, X/)i>1, (Y7, Y/)i>1 such that Ny, Ny are
P(n) distributed and for all ¢ > 1, (X;, X}) and (Y;,Y;) are distributed according to w. Then the
random multisets

X:{Xl,...,XNl} and y:{Yl,,YNQ}

are independent Poisson point processes with intensity measure nu. Similarly X" = {X{,..., Xy, } and
V' ={Y{,..., Yy, } are independent Poisson point processes with intensity measure ny'.
The regularity property ensures that

LU{X1, . Xn 1 AV, Y )

N1 N2
< DXL X B AV YR 2047 | D T xsxs + ) Ly

i=1 j=1
Taking expectations yields
N1 N2
EL(np) < EL(ny)+2CAPE | > P(X; # X))+ > P(Y; #Y))
i=1 j=1

= EL(ny) +4CAP nr({(z,y) € (RY)?; z # y}).

Optimizing the later term on the coupling 7 yields the claimed inequality involving the total variation
distance. O

Corollary 9. Assume that the functional L satisfies the regularity property (Rp). Let m >0, Q C R?
be measurable with positive Lebesgue measure and let f be a monnegative locally integrable function on
R?. Let o = fQ f/vol(Q) be the average value of f on Q. It holds

EL(m flg) < EL(malg) + 2Cmdiam(Q)” /Q |f(z) — aldu.

Proof. We simply apply the total variation bound of the previous lemma with n = m f 0 f=mavol(Q),
du(z) = f(z)lg(x)dz/ fQ fand dp/(z) = 1g(x)dx/vol(Q). Note that

w1 f@)1gx) 1)),  Jolf(x) —aldx
[ i P




2.1.3 Average is enough

It is known since the works of Rhee and Talagrand that concentration inequalities often allow to deduce
almost sure convergence from convergence in average. This is the case in our general setting.

Proposition 10. Let L be a bipartite functional on multisets of R%, satisfying the reqularity property
(Rp). Assume d > 2p > 0. Let ju be a probability measure i on R® with [ |z|*du(x) < 4o0. Consider
independent variables (X;)i>1 and (Y;);>1 with distribution p.

If a > 2dp/(d — 2p) then the following convergence holds in probability:

oy POXIL (Vi) — BLAXGL, (Y3, _

n—r 00 nl d

Moreover if a« > 4dp/(d —2p), the convergence happens almost surely, and if u has bounded support, then
it also holds in L1 for any g > 1.

Proof. This is a simple consequence of Azuma’s concentration inequality. It is convenient to Z(n) =
(X1,...,Xn,Y1,...,Y,). Assume first that the support of p is bounded and let A denote its diameter.
By the regularity property, modifying one point changes the value of the functional by at most a constant:

|L(Zy, ..., Zon) — L(Z1,. .. Zi 1, 20 Zigay e oy Zan)| < 2CAP.
By conditional integration, we deduce that the following martingale difference:
di = E(L(Z(n)) | Zl, ey Zz) — E(L(Z(n)) | Zl, ey Zi—l)
is also bounded |d;| < 2C AP almost surely. Recall that Azuma’s inequality states that
k +2
(1$50050)
i=1
Therefore, we obtain that

P(|ELGXeH, AH) — BLUXGHL,, (Vi) | > 1) < 267 mndram, 2)

and there is a number C” (depending on A only) such that

¥
nl=d

. (»L({Xz—}?_l, {Vifiey) —BLAX e, (V)] t) < gt

When d > 2p, we may conclude by the Borel-Cantelli lemma.

If 1 is not assumed to be of bounded support, let S := max{|Z;|; i < 2n}. A conditioning argument
allows to use the above method. Let s > 0 and B(s) = {z; |z| < s}. Given {S < s}, the variables
{X1,---, X} and {Y7,---,Y,} are mutually independent sequences with distribution jp(s)/u(B(s)).
Hence, applying @) for pp(s)/p(B(s)) instead of p and 2s instead of A, for any t > 0,

1-2p,2
P( >t‘S§s>§2€xp<—n72>.
cpSP

Hence for 6 > 0 to be chosen later,
> t>

o _p ( L({X, Yidis))  EL({(Xiy {Yi)i)

1-% 1-2
1-2 -2,
SP(S>TL%)+26Xp <_n7 .

L{Xib Vi) EL({Xi}, (Vi)

nl—d nl=4a

n n




Since P(S > u) =1 — (1 — u(B(s))** < 2nu(B(s)) < 2n([ |z|*du(z))/u”, we get that for some constant
¢ and any § > 0,

Since o > 2dp/(d — 2p) we may choose § € [2dp/(d — 2p), a], which ensures that the latter quantities
tend to zero as n increases. This shows the convergence in probability to 0 of

L{XH L, (Vi) EL{XGHL, (VL)

- .
nl=d nl=d

If o > 4dp/(d — 2p) we may choose we may choose 6 € [2dp/(d — 2p), o/2], which ensures that »  u, <
+o00. The Borel-Cantelli lemma yields the almost sure convergence to 0. O

2.2 Consequences of subadditivity

We start with a very general statement, which is however not very precise when the measures do not
have disjoint supports.

Proposition 11. Let L satisfy (S,). Let u1, po be finite measures on R? with supports included in a set
Q. Then

EL(j + i2) < EL(1) + EL(p2) + 2Cdiam(Q)” (1 4+ (Q) + V12(Q))

Proof. Consider four independent Poisson point processes Xp, )1, X2, Vo such that for ¢ € {1,2}, the
intensity of X; and of ); is u;. It is classical [8] that the random multiset X; U X5 is a Poisson point
process with intensity pq1 + p2. Also, V4 U Ys is an independent copy of the latter process. Applying the
subadditivity property,

L(X1 U Xy, Y1 Uy)
< L(X1, V1) + L(X2, Vs) + Cdiam(Q)P (1 4 |card(Xy) — card(Yy)| + 1 4 |card(Xs) — card()%)]) .

Since card(X;) and card();) are independent with Poisson law of parameter u;(Q) (the total mass of ;),

1
Elcard(X;) — card(Y;)| < (E(card(Xi) — card(yi))Q) * = 2var(card(X))) = v/20(Q).
Hence, taking expectations in the former estimate leads to the claimed inequality. O

Partition techniques are essential in the probabilistic theory of Euclidean functionals. The next
statement allows to apply them to bipartite functionals. In what follows, given a multiset A and a set
P, we set X(P) := card(X N P). If p is a measure and f a nonnegative function, we write f -y for the
measure having density f with respect to p.

Proposition 12. Assume that the functional L satisfies (Sp). Consider a finite partition Q = Upep P
of a subset of R? and let v be a measure on R? with v(Q) < +o0o. Then

EL(lg-v) < Y EL(Lp-v)+3Cdiam(Q)* > /v(P).

pPeP peP

Proof. Consider X,) two independent Poisson point processes with intensity v. Note that X N P is a
Poisson point process with intensity 1p - v, hence X'(P) is a Poisson variable with parameter v(P). We
could apply the subadditivity property to (X N P)pep, (¥ N P)pep, which yields

LXNQ,YNQ) < Y LXNPYNP)+Cdiam(Q)" Y (14 |X(P) — Y(P)]).

prPeP pEP

Nevertheless, doing this gives a contribution at least C'diam(Q)? to cells which do not intersect the
multisets X,). To avoid this rough estimate, we consider the cells which meet at least one of the
multisets:

P = {P e P; X(P)+Y(P)#0}.



We get that

LXNQYNQ) < Y LXNPYNP)+Cdam(Q)P > (14 |X(P) - V(P)))

PeP peP

< Y LXNPYAP) +Caam(@F Y Lurysyimso(1+ [X(P) - V()
pPeP peEP

< Y LXNPYNP)+Cdiam(Q) Y (Lx(pyry(pyro + [X(P) = V(P)]).
Pep peP

Since X' (P) and Y(P) are independent Poisson variables with parameter v(P),
P(X(P)+ Y(P) #0) =1 — e ") and E|X(P) — Y(P)| < /2v(P).
Hence, taking expectation and using the bound 1 —e~% < min(1,¢) < Vi,

EL(lg-v) < Y EL(1p-v)+2v2Cdiam(Q)? > \/v(P).

PeP pEP

O

The next statement deals with iterated partitions, which are very useful in the study of combinatorial
optimisation problems, see e.g. [I5 [T9]. If P is a partition, we set diam(P) = maxpecp diam(P) (the
maximal diameter of its cells).

Corollary 13. Assume that the functional L satisfies (Sp). Let Q@ C R and Qi, ..., Qx be a sequence
of finer and finer finite partitions of Q. Let v be a measure on R with v(Q) < +o0o. Then

k
EL(lg-v) < Y EL(1,-v)+3C» diam(Qi1)” Y vv(g),

q€Qk 1= q€Q;
where by convention Qo = {Q} is the trivial partition.

Proof. We start with applying Proposition [[2] to the partition Q; of Q:

EL(lg-v) < Y EL(l4-v)+ 3Cdiam(Qo)” > /v(q).

qeQ1 qeEQ

Next for each ¢ € Q7 we apply the proposition again for the partition of ¢ induced by Q- and iterate
the process k — 2 times. O

3 Uniform cube samples

We introduce a specific notation for n € (0, 400),
L(n) := EL(nljg ).
We point out the following easy consequence of the homogeneity properties of Poisson point processes.
Lemma 14. If L satisfies the homogeneity property (H,) then for all a € R%, p>0 andn >0
EL(n]la+[07p]d) = ppi(npd).

The following theorem is obtained by adapting to our abstract setting the line of reasoning of Boutet
de Monvel and Martin in the paper [3] which was devoted to the bipartite matching:

Theorem 15. Let d > 2p be an integer. Let L be a bipartite functional on R satisfying the properties
(Hyp), (Rp) and (Sp). Then there exists B, > 0 such that

wll
E

lim
n—o0 nl_
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Proof. Let m > 1 be an integer. Let K € N such that 2 < m < 2K+l Set Qo = [0,a]? where
a:=258%1/m > 1. Let Qy = {Qo}. We consider a sequence of finer and finer partitions Q;, j > 1 where
Q; is a partition of Qg into 27¢ cubes of size a2~/ (throughout the paper, this means that the interior
of the cells are open cubes of such size, while their closure is a closed cube of the same size. We do not
describe precisely how the points in the boundaries of the cubes are partitioned, since it is not relevent
for the argument). One often says that Q;, j > 1 is a sequence of dyadic partitions of Q.

A direct application of Corollary [[J] for the partitions Qi, ..., Qx+1 and the measure nly 1j¢(z) dx
gives

K+1
L(n) =EL(nlpe) < > EL(nlypqe) +3C Y diam(Q; 1)P Y y/nVol(gn[0,1]4).
qEQK 11 j=1 q€Q;

Note that Qx 1 is a partition into cubes of size 1/m, so that its intersection with [0, 1]¢ induces an
(essential) partition of the unit cube into m? cubes of side-length 1/m. Hence, in the first sum, there
are m terms which are equal, thanks to translation invariance and Lemma [I4] to EL(nlgmm-1ja) =
m~PL(nm~9). The remaining terms of the first sum vanish. In order to deal with the second sum of the
above estimate, we simply use the fact that Q; contains 27¢ cubical cells of size a277 = 2K+1=7 /;m < 2177,
Hence their indidual volumes are at most 2¢(1=7) . These observations allow to rewrite the above estimate
as

K+1
L(n) < m*PL(nm~%) +3C Y diam([0,2°77]4)P24\/n 240~
j=1
K+1
= m?PL(nm~?) + 3Cy/n diam([0,1]%)P " 2rE=+E 0D,
j=1

Hence, there is a number D depending only on p,d and C such that

L(n) <m*PL(nm~%) + Dvn 2K (5-p) < m®PL(nm~%) + Dy/n m? .
Let t > 0. Setting, n = m?t¢ and f(u) = L(u?)/u?~P, the latter inequality reads as
f(mt) < f(t)+ D%,

and is valid for all + > 0 and m € N*. Since f is continuous (Proposition [ shows that u ~ L(u) is
Lipschitz) and lims—, 4 oo =5 = 0, it follows that lim;, o f(t) exists (we refer to [3] for details). O

Remark 4. The above constant §;, is positive as soon as L satisfies the following natural condition: for

all 1,..., 0, Y1, Yn in RE L({zy, ..oz {yt, ooy yn ) > ey dist(zi, {y1,...,yn})P. To see this,
one combines Proposition [l and the lower estimate given in

4 Upper bounds, upper limits

4.1 A general upper bound

Lemma 16. Let d > 2p and let L be a bipartite functional satisfying (Sp), (Rp) and L(0,0) = 0. Then
there exists a constant D such that, for all finite measures v,

EL(v) < D diam(Q)” min (v(Q), V(Q)k%),
where Q@ contains the support of v.

Proof. Thanks to corollary[d it is enough to deal with the case v(Q) > 2¢ (or any other positive number).
First note that we may assume that @ is a cube (given a set of diameter A, one can find a cube containing
it, with diameter no more than ¢ times A where ¢ only depends on the norm). We consider a sequence

11



of dyadic partitions of @, (P¢)¢>0, where for £ € N, P, divides Q into 2° cubes of side-length 27* times
the one of Q. Let k € N* to be chosen later. By Corollary [[3] we have the following estimate

< Y EL(lp-v +3C’Z (27" diam(Q))” > /u(P). (3)

PeEPy PeP,
Thanks to Corollary[1 the first term of the right-hand side of (@) is at most
> € (27 diam(Q))"v(P) = C27* (diam(Q))"v(Q).
PePy,

By the Cauchy-Schwarz inequality

) MP)s(W)%(Z u(P)) 2% \/iQ).

PeP, PeP,

Hence the second term of the right-hand side of (@) is at most

e

3¢ (2diam(Q))" 3 249) /(@) < 2 (42) (diam(Q))" Vi (@).

(=1
This leads to
EL() < (diam(Q))” (C271(Q) + oo+ (4-7) V(@).

Choosing k = | %log, v(Q)| > 1 completes the proof. O

4.2 The upper limit for densities

Theorem 17. Let d > 2p. Let L be a bipartite functional on RY satisfying the properties (Hp), (Rp),
(Sp). Let f:R? — RT be an integrable function with bounded support. Then

EL(n

lim sup ——— <ﬂ / fl”
n— 00 7’L

where B, is the constant appearing in Theorem [13.

Proof. By a scaling argument, we may assume that the support of f is included in [0,1]¢ and f f=1
(the case [ f =0 is trivial). We consider a sequence of dyadic partitions (P¢)sen of [0, l]d for € N, Py
divides [0,1]% into 2°¢ cubes of side-length 27¢. Let k € N* to be chosen later. Corollary [ gives

< ) EL(nflp) +3CZ 2~ diam([0,1]4)" / (4)

PEPy PeP,

5 o) - (1)

PeP,

By the Cauchy-Schwarz inequality

> /Pf< 2“%<

PeP,

Hence the second term of the right-hand side of () is at most
SC(Qdiam \/_Z 26 < cqn? Qk( p).

Let ap be the average of f on P, then applying Corollary [ to the first terms of () leads to

BLnf) < 3 (EL(narts) +20ndian(e) [ 1f - apl) + o2 (),
P

PeEPy

12



Each P in the sum is a square of side length 27%  hence using homogeneity (see Lemma [I4))

EL(nf)< Y (2—kPM(nap2—kd)+nc;2—’w/P|fap|) +eqni2r(3p). (5)

PePy

Let us recast this inequality with more convenient notation. We set g(t) = L(t)/t'~?/? and we define
the piecewise constant function

Jr = Z aplp = Z fVol 1p.

PePy PePy

It is plain that [ fr = [ f < +o00. Moreover, by Lebesgue’s theorem, limy_,~ fr = f holds for almost
every point z. Inequality (B) amounts to

LD < 5 (stnarz)ay fotni 7 [ 17— ) + eanb=2t ()

n PePy,

= > </g(nfk2’“d)f25+n5 cng’“p/ |ffk|>+cdn5%2k(5—p>
PeEPy P P

b

[otnz a) 178+ chnt ot [17 = i+ caliz )

If there exists ko such that f = fi, then we easily get the claim by setting £ = ko and letting n go to
infinity (since g is bounded and converges to (;, at infinity, see Lemma [0 and Theorem [[T]). On the
other hand, if f never coincides almost surely with f, we use a sequence of numbers k(n) € N such that

el
2

1

lim k(n) = +o0, limnd2 %" = 400 and limni2 *" (/ lf— fk(n)|> " —o. (6)

Assuming its existence, the claim follows easily: applying the inequality for k = k(n) and taking upper
limits gives

i EL(n f) : —k(n)d 1-5

limsup ——— < hmnsup/g(nQ (n) fk(n))fk(nsi'

n n- d

Since lim fy,) = f a.e., it is easy to see that the limit of the latter integral is S [ fi=a: first the

integrand converges almost everywhere to 8y, f1~4 (if f(x) = 0 this follows from the boundedness of g; if
f(x) # 0 then the argument of ¢ is going to infinity). Secondly, the sequence of integrands is supported
on the unit cube and is uniformly integrable since

/(g(n2k(")dfk<n>)fig)ﬁ < (supg)™7 /fk(n) = (supg)™7 /f < +oo.

It remains to establish the existence of a sequence of integers (k(n)),, satisfying (@). Note that since
[k >0, [fe=[f=1and ae. limf, = f, it follows from Scheffé’s lemma that limj [ |f — fx| = 0.
Hence o(k) = (sup;y, [ |f — f;1)~%? is non-decreasing with an infinite limit. We derive the existence of
a sequence with the following stronger properties

h’rrzn k(n) = +OO, h’rrzn W =+ and hTIlIl W =0 (7)

as follows. Set v = 2%, Since v*\/p(k — 1) is increasing with infinite limit

[y @(0), +00) = Ups1 [vFVo(k — 1), /¥ /().

For n > v1/©(0), we define k(n) as the integer such that

IV p(k(n) = 1) < n <A ok (n)).

This defines a non- decreasmg sequence. It is clear from the above strict inequality that hmn

Hence ny=*") >\ /o(k(n) — 1) tends to infinity at infinity. Eventually n/(y*(™¢ ) < fy/\/

tends to zero as required. The proof is therefore complete.
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4.3 Purely singular measures

Lemma 18. Let d > 2p. Let L be a bipartite functional on R? with properties (R,) and (S,). Let u be
a finite singular measure on R having a bounded support. Then

EL
lim (nf )
d

n—0o0 n17

=0.

Proof. Let @ be a cube which contains the support of . We consider a sequence of dyadic partitions
of Q, (P¢)een. For £ € N, P, divides Q into 2°¢ cubes of side length 27 times the one of Q. As in the
proof of Lemma [IG] a direct application of Corollary [[3] gives for k € N*:

EL(np) < Y EL(nlp-p)+3CY (27 diam(Q))” > /nu(P). (8)

PePy =1 PeP,

The terms of the first sum are estimated again thanks to the easy bound of Corollary [} since each P in
Py is a cube of side length 27% times the one of @, it holds

Z EL(nlp-p) < Z C(Q_kdiam(Q))pn,u(P) = ¢p. 2 "n|ul.
PeEPy PEPy

Here |p] is the total mass of p. We rewrite the second term in (&) in terms of the function

P
ge = Z %lPa

PeP,

where ) stands for Lebesgue’s measure. Since A\(P) = 27\ (Q), we get that

k
02 nlul 1 3C (2diam(Q))" Vi 32 I 2% Q) A(p), ML)
(=1

EL(nu) Py NP

IN

k
.0 27 P ] 4 3C (2diam(Q))"A(Q) "2 v/n ZQZ(gfp)/\/g_e'
=1

By the differentiability theorem, for Lebesgue-almost every x, g¢(2) tends to zero when ¢ tends to infinity
(since p is singular with respect to Lebesgue’s measure). Moreover, gy is supported on the unit cube and
J(V90)*> = [ g¢ = || < +oo. Hence the sequence of functions ,/g; is uniformly integrable and we can
conclude that limy_, o f /9¢ = 0. By Cesaro’s theorem, the sequence

_ 2 2C fym
Zi 27E)

€k

also converges to zero, using here that d > 2p. By an obvious upper bound of the latter denominator,
we obtain that there exists a number ¢ which does not depend on (k,n) (but depends on C,p,d, @, |u|)
such that for all £ >1

BL(m) < ¢ (n2 + Va2 E 7)),

where g5, > 0 and limy e, = 0. We may also assume that (g5) is non-increasing (the inequality remains
valid if one replaces €4 by sup,> ;). It remains to choose k in terms of n in a proper way. Define

(p(n) = VEL1logyn]

Obviously lim,, ¢(n) = +o00. For n large enough, define k(n) > 1 as the unique integer such that

ok(n) < néga(n) < k)41,

14



Setting k = k(n), our estimate on the cost of the optimal matching yields

P < ctt) (s + encmpl) 7))

It is easy to check that the right hand side tends to zero as n tends to infinity. Indeed, lim,, ¢(n) = +o0,
hence for n large enough

1
k(n) > Llog2 (n%gp(n)/2)J > {E log, nJ .
Since the sequence (ej) is non-increasing, it follows that

d—p

d_
k) P(1) 277 S € 1150, n|P(1)
tends to zero when n — co. The proof is therefore complete. [l

4.4 General upper limits

The first statement of Theorem Blis a consequence of Propositions [l [I0, and the following result.

Theorem 19. Let d > 2p > 0. Let L be a bipartite functional on R? with the properties (H,), (R,) and

(Sp). Consider a finite measure j on R? such that there exists o > M with

/|x|”‘du(z) < +o00.

Let [ be a density function for the absolutely continuous part of u, then

lim sup
n—o0

) <5, [ (9)

Remark 5. Observe that the hypotheses ensure the finiteness of f f'~ 4. Indeed Holder’s inequality gives

[ s ([ as leo‘)f(wdz)lg ([a+ |z|°*>1-f»)d

2dp dp

-’

where the latter integral converges since o > >

Proof. Assume first that p has a bounded support. Write y = pqc + pts where ug is the singular part
and dpee(z) = f(x) dz. Applying Proposition [Tl to fiq. and p, dividing by n'=?/¢, passing to the limit
and using Theorem [[7] and Lemma [I§ gives

EL EL(npge EL(nps —z
7(715) < lim sup 7(7“2 ) + lim sup n/j < By fl
nl—d n nl—d nl=d

lim sup
Hence the theorem is established for measures with bounded supports.

Now, let us consider the general case. Let B(t) = {x € R?: |z| < t}. Let Ag = B(2) and for integer
¢ >1, Ay = B2O\B(2%. Now, let X = {Xy,---,Xn,}, YV = {¥1,---,Yn,} be two independent
Poisson process of intensity nu, and T = max{|Z| : Z € X UY}. Applying the subadditivity property
like in the proof of Proposition [[2] we obtain

LXY) < Y LXNALYNA)+CTP S Laiayyanso(l+1X(A) = V(Ag)).  (10)
>0 £>0

Note that the above sums have only finitely many non-zero terms, since p is finite. We first deal with
the first sum in the above inequality. By Fubini’s Theorem,

EZ Xﬁz%é?)ﬁ/lg ZE Xﬂz‘izjgyﬁ/le)
>0 >0 n
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Applying (@) to the compactly supported measure p 4, for every integer ¢ gives

L(XNALYNA

nl=a

limsup E <pr fioa. (11)
n A

By Lemma [I8 for some constant cg,

L(XNALYNA)

i3

E < chZpu(Ag)lfg.

n
From Markov inequality, with mq = [ |z|*du(z),
u(Ar) < pRN\B(2%) < 27ma.

Thus, since a > 2pd/(d —2p) > dp/(d—p), the series 3, 271(A;)' =% is convergent. We may then apply
the dominated convergence theorem, we get from (II]) that

limsupE ) | HANA YA ﬂL/flfﬁ.

1—-2
d
>0 n

For the expectation of the second term on the right hand side of ([I0)), we use Cauchy-Schwartz inequality,

E TP Taan+yanso(l+ X (Ar) — V(Ar)))

=0
= e; \/W\/E(IX(AEH-J/(AE)#OO +1X(40) - Y(A)N)?)
< VBV > VP (A + V(A7) £ 0) + E[|X(Ar) — V(A
= V2/E[T%] i V1 — et 4 2np(Ay)

0
< 2VE[T%] ﬁ; Vi(Ap),

where we have used 1 — e™™ < u. As above, Markov inequality leads to

> V(A < yma y 27 < +oo.

>0 >0

Eventually we apply Lemma [ with v := 2p < 2pd/(d — 2) < « to upper bound E[T?P]. We get that for
some constant ¢ > 0 and all n > 0,

nTEEE | TP T a0 (1+ X (A)) = Y(Ag)]) | < en~2tits,
>0

Since o > 2dp/(d — 2p), the later and former terms tend to zero as n tends to infinity. The upper bound
@) is proved. O

5 Examples of bipartite functionals

The minimal bipartite matching is an instance of a bipartite Euclidean functional M;(X,)) over the
multisets X = {X1,..., X} and Y = {Y1,...,Y,}. We may mention at least two other interesting
examples: the bipartite traveling salesperson problem over A and ) is the shortest cycle on the multiset
X U Y such that the image of X is ). Similarly, the bipartite minimal spanning tree is the minimal
edge-length spanning tree on & U ) with no edge between two elements of X or two elements of V.
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5.1 Minimal bipartite matching

Fix p > 0. Given two multi-subsets of R? with the same cardinality, X = {Xi,...,X,} and Y =
{Y1,...,Y,}, the p-cost of the minimal bipartite matching of X and ) is defined as

My(X = mi Xi— Yo,
p(X,D) ;Ielgigl |

where the minimum runs over all permutations of {1,...,n}. It is useful to extend the definition to
sets of different cardinalities, by matching as many points as possible: if X = {X;,...,X,,} and Y =
{Y1,...,Y,} and m < n then

M,(X,Y) = mainz 1X; — Yo7,
i=1

where the minimum runs over all injective maps from {1,...,m} to {1,...,n}. When n < m the
symmetric definition is chosen My(X,Y) := M, (Y, X).

The bipartite functional M, is obviously homogeneous of degree p, i.e. it satisfies (#{,). The next
lemma asserts that it is also verifies the subadditivity property (S,). In the case p = 1, this is the
starting point of the paper [3].

Lemma 20. For any p > 0, the functional M, satisfies property @) with constant C' = 1/2. More
precisely, if Xi,...,Xs and Y1, ...,V are multisets in a bounded subset Q C R?, then

F b b diam(Q)? b
Mp( U U yi) <N M (XL, + — > leard(X;) — card (V).
i=1 i=1 i=1 i=1

Proof. Tt is enough to upper estimate of the cost of a particular matching of Ule X; and Ule YVi. We
build a matching of these multisets as follows. For each i we choose the optimal matching of &; and
Yi. The overall cost is ), M,(X;, Vi), but we have left ), |card(A;) — card();)| points unmatched (the
number of excess points). Among these points, the less numerous species (there are two species: points
from X;’s, and points from Y;’s) has cardinality at most £ >, [card(X;) — card(};)|. To complete the
definition of the matching, we have to match all the points of this species in the minority. We do this in
an arbitrary manner and simply upper bound the distance between matched points by the diameter of

Q. O
The regularity property is established next.
Lemma 21. For any p > 0, the functional M, satisfies property ([R) with constant C = 1.

Proof. Let X, X1, X2, Y, V1, Vo be finite multisets contained in @ = B(1/2). Denote by x, x1, 22, Yy, Y1, Yo
the cardinalities of the multisets and a A b for min(a, b). We start with an optimal matching for M, (X N
Xa,Y N Ys). It comprises (x + x2) A (y + y2) edges. We remove the ones which have a vertex in X5 or
in )Ms. There are at most zs + yo of them, so we are left with at least ((x +a) A (y+y2) — a2 — y2)+
edges connecting points of X to points of Y. We want to use this partial matching in order to build a
(suboptimal) matching of X N &} and Y N Y. This requires to have globally (x + 21) A (y + y1) edges.
Hence we need to add at most

(@+2) Ay +y) = ((@+22) Ay +42) — 22 —12)

new edges. We do this in an arbitrary way, and simply upper bound their length by the diameter of Q.
To prove the claim it is therefore sufficient to prove the following inequalities for non-negative numbers:

(x+21) ANy +uy1) — ((z+:c2)/\(y+y2)—z2—y2)+ <z + w22+ Y1+ yo. (12)
This is obviously equivalent to
w+ar <@+ aatyn g+ (@ 22) A (Y +ye) — 2 — o),

or y+y1§z1+z2+y1+y2+((x+z2)/\(y+y2)—z27y2)+.
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After simplification, and noting that y; > 0 appears only on the right-hand side of the first inequation
(and the same for x; in the second one), it is enough to show that

Ay <aa+yo+ (@ +32) Ay +y2) — 22 —y2)

This is obvious, as by definition of the positive part, x Ay < xo + y2 + ((Jc ANy) —z2 — y2)+. O

5.2 Bipartite traveling salesperson tour

Fix p > 0. Given two multi-subsets of R? with the same cardinality, X = {Xi,...,X,} and J =
{Y1,...,Y,}, the p-cost of the minimal bipartite traveling salesperson tour of (X,)) is defined as

Tp(¥,Y) = min Z Xot) = Yo" + D Yory = Xoqrn) P + Yorm) = Xo I,

(o,0")€S2 “

where the minimum runs over all pairs of permutations of {1,...,n}. We extend the definition to sets
of different cardinalities, by completing the longest possible bipartite tour : if X = {X1,..., X} and
Y={Y1,...,Y,} and m < n then

Tp(x,Y) = mﬂbz Xoti) = Yo" + D [Yorty = Xoqun) P + Yortm) = Xol?

where the minimum runs over all pairs (o,0’), with o € S;,, and ¢’ is an injective maps from {1,...,m}
to {1,...,n}. When n < m the symmetric definition is chosen T,,(X,Y) := T,(¥,X). This traveling
salesperson functional is an instance of a larger class of functionals that we now describe.

5.3 Euclidean combinatorial optimization over bipartite graphs

For integers m, n, we define [n] = {1,---n} and [n],, = {m+1,--- ,m+n}. Let B, be the set of bipartite
graphs with common vertex set ([n],[n],) : if G € B, the edge set of G is contained is the set of pairs
{i,n+j}, with i,j € [n].

We should introduce some graph definitions. If Gy € B,, and G2 € B, we define G; + G5 as the
graph in B,, ., obtained by the following rule : if {i,n+ j} is an edge of G then {i,n+m-+j} is an edge
of G1 4+ Go, and if {i,m+ j} is an edge of G then {n+1i,2n+m+ j} is an edge of G + G2. Finally, if
G € Bphim, the restriction G’ of G to B, is the element of B,, defined by the following construction rule:
if {i,n+m + j} is an edge of G and (i, j) € [n]? then add {i,n + j} as an edge of G'.

We consider a collection of subsets G,, C B, with the following properties, there exist constants
Ko, k > 1 such that for all integers n, m,

(A1) (not empty) If n > ko, G,, is not empty.

(A2) (isomorphism) If G € G,, and G’ € B,, is isomorphic to G then G’ € G,,.

(A3) (bounded degree) If G € G,,, the degree of any vertex is at most k.

(A4) (merging) If G € G,, and G’ € G,,, there exists G” € G, 4., such that G + G' and G” have all but

at most x edges in common. For 1 < m < kg, it also holds if G’ is the empty graph of B,,.

(A5) (restriction) Let G € G,, and kg + 1 < n and G’ be the restriction of G to B,,—1. Then there exists
G" € G,,_1 such that G’ and G have all but at most x edges in common.

If |X| = |Y| = n, we define
L(X,Y) = min > |X; — Y|P
(i,5)€[n)?:{i,n+j}eq

With the convention that the minimum over an empty set is 0. Note that the isomorphism property
implies that L(X,Y) = L(Y, X). If m = |X| < |Y| = n, we define

L(X,Y) = wmin > [ Xi = Yo |, (13)
7 i) e[m)2 {i,mtj) G

18



where the miminum runs over all pairs (G,0), G € G, and ¢ is an injective maps from {1,...,m} to
{1,...,n}. When n < m the symmetric definition is chosen L(X,)) := L(Y, X).

The case of bipartite matchings is recovered by choosing G,, as the set of graphs in B,, where all
vertices have degree 1. We then have kg = 1 and G,, satisfies the merging property with £ = 0. It also
satisfies the restriction property with k = 1. The case of the traveling salesperson tour is obtained by
choosing G,, as the set of connected graphs in B,, where all vertices have degree 2, this set is non-empty
for n > ko = 2. Also this set G, satisfies the merging property with x = 4 (as can be checked by edge
switching). The restriction property follows by merging strings into a cycle.

For the minimal bipartite spanning tree, we choose G, as the set of connected trees of [2n] in B,,.
It satisfies the restriction property and the merging property with x = 1. For this choice, however, the
maximal degree is not bounded uniformly in n. We could impose artificially this condition by defining
Gy, as the set of connected graphs in B,, with maximal degree bounded by x > 2. We would then get the
minimal bipartite spanning tree with maximal degree bounded by k. It is not hard to verify that the
corresponding functional satisfies all the above properties.

Another interesting example is the following. Fix an integer > 2. Recall that a graph is r-regular
if the degree of all its vertices is equal to r. We may define G,, as the set of r-regular connected graphs
in B,. This set is not empty for n > ko = r. It satisfies the first part of the merging property (A4)
with k = 4. Indeed, consider two r-regular graphs G, G’, and take any edge e = {x,y} € G and
e/ ={a',y'} € G'. The merging property holds with G”; the graph obtained from G + G’ by switching
(e,e') in ({z,9'}, {«',y}). Up to increasing the value of x, the second part of the merging property is
also satisfied. Indeed, if n is large enough, it is possible to find rm < rxg = r? edges e1, -, €pp in
G with no-adjacent vertices. Now, in G”, we add m points from each species, and replace the edge
eritq ={x,n+y}t, 1 <i<m,0<gqg<r, by two edges : one between = and the i-th point of the second
species, and one between y and the i-th point of the first species. G’ is then a connected r-regular graph
in By, 1., with all but at most 272 edges in common with G. Hence, by taking x large enough, the second
part of the merging property holds.

Checking the restriction property (A5) for r-regular graphs requires a little more care. Let r =
ko + 1 < n and consider the restriction Gy of G € B, to B,,—1. Our goal is to show that by modifying
a small number of edges of GG1, one can obtained a connected r-regular bipartite graph on B,_;. We
first explain how to turn G into a possibly non-connected r-regular graph. Let us observe that GG; was
obtained from G by deleting one vertex of each spieces and the edges to which these points belong. Hence
(1 has vertices of degree r, and vertices of degree r — 1 (r blue and r red vertices if the removed points
did not share an edge, only  — 1 points of each spieces if the removed points shared an edge). In any
case G1 has at most 2r connected components and r vertives of each color with one edge missing. The
simplest way to turn G into a r regular graph is to connect each blue vertex missing an edge with a red
vertex missing an edge. However this is not always possible as these vertices may already be neighbours
in G; and we do not allow multiple edges. However given a red vertex vy and a blue vertex vp of degree
r — 1 and provided n — 1 > 2r? there exists a vertex v in G which is at graph distance at least 3 from
vp and vr. Then open up an edge to which v belongs and connect its end-points to vr and vp while
respecting the bipartite structure. In the new graph vp and vr have degree r. Repeating this operation
no more than r times turns GGy into a r regular graphs with at most as many connected components
(and the initial and the final graph differ by at most 3r edges). Next we apply the merge operation
at most 2r — 1 times in order to glue together the connected componented (this leads to modifying at
most 4(2r — 1) edges. As a conclusion, provided we choose ko > 2r?, the restriction property holds for
Kk=11r.

We now come back to the general case. From the definition, it is clear that L satisfies the property
([H,). We are going to check that it also satisfies properties (S,)) and ([R).

Lemma 22. Assume (A1-A4). For any p > 0, the functional L satisfies property (EZD with constant
C = (3+ ko)K/2.

Proof. The proof of is an extension of the proof of Lemma 20l We can assume without loss of generality
k> 2. Let Xy,..., X, and Vi,..., Y be multisets in @ = B(1/2). For ease of notation, let x; = |A;],
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yi = |Vi| and n = Zle i A Zle yi- If n < kg, then from the bounded degree property (A3),

L( CJ XZ-,LkaZ-) < nk < KKg.

i=1 =1

If n > kg, it is enough to upper bound the cost for an element G in G,. For each 1 < ¢ < k, if
n; = x; ANy; > Ko, we consider the element G; in G,,, which reaches the minimum cost of L(X;,);). From
the merging property (A4), there exists G’ in Gy~ 1 n, Whose total cost is at most

i tng=RQ

1= L(X, ) + Kk

It remains at most >, ko + |z; — y;| vertices that have been left aside. The less numerous species has
cardinal mg < m = (3, ko + |z — yi|)/2. If mg > Ko, from the non-empty property (Al), there exists
a graph G” € G,,, that minimizes the cost of the vertices that have been left aside. From the merging
and bounded degree properties, we get

(UXZ,UJJZ)<L’+f<a+f<am<ZLXz,yl 22 (34 ko + |z — yil) -

i=1 =1

If mg < Ko, we apply to G’ the merging property with the empty graph : there exists an element G in
G,, whose total cost is at most

(UXZ,UJA)<L’+H<ZL X, Vi) + (k+ k.
i=1 i=1
We have proved that property (S,)) is satisfied for C' = (3 + ro)r/2. O

Lemma 23. Assume (A1-A5). For any p > 0, the functional L satisfies property @) with constant
C = C(r, ko).

Proof. Let X, X1, X,), V1, Yo be finite multisets contained in B(1/2) = @. Denote by x, x1, x2,y, Y1, Y2
the cardinalities of the multisets. As a first step, let us prove that

By induction, it is enough to deal with the cases (z1,y1) = (1,0) and (x1,y1) = (0,1). Because of our
symmetry assumption, our task is to prove that

L(XU{a},Y) < L(X,Y) +C. (15)

If card(Y) < card(X), then the latter is obvious: choose an optimal graph for L(X,)) and use it to
upper estimate L(X U {a},Y). Assume on the contrary that card())) > card(X) + 1. Then there exists
Y’ C Y with card()’) = card(X) and L(X,)’). Let b € Y\ V'. In order to establish (I3, it is enough
to show that

L(XU{a}, Y U{b}) < L(X,YV)+C,

but this is just an instance of the subadditivity property. Hence (I4]) is established.

In order to prove the regularity property, it remains to show that
L(X,Y) < L(XU Xy, Y UYs) + Clxa + ya2). (16)
Again, using induction and symmetry, it is sufficient to establish
LX, V) < L(XU{a},))+C. (17)

If card(X') A card(cY) < Ko, then by the bounded degree property L(X,Y) < rrodiam(Q)P and we are
done. Assume next that card(X),card(}) > ko. Let us consider an optimal graph for L(X U {a},)).
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If a is not a vertex of this graph (which forces card(X) > card()’)) then one can use the same graph
to upper estimate L(X,)) and obtain (['f]). Assume on the contrary that a is a vertex of this optimal
graph. Let us distinguish two cases: if card(X’) > card()), then in the optimal graph for L(X U{a},Y),
at least a point b € X is not used. Consider the isomorphic graph obtained by replacing a by b while the
other points remain fixed (this leads to the deformation of the edges out of a. There are at most x of
them by the bounded degree assumption). This graph can be used to upper estimate L(X,)), and gives

L(X,Y) < L(XU{a},Y) + kdiam(Q)".

The second case is when a is used but card(X) + 1 < card()). Actually, the optimal graph for L(X U
{a},Y) uses all the points of X U{a} and of a subset of same cardinality )’ C ). Choose an element b in
Y'. Then Y’ = Y’ \ {b} has the same cardinality as X. Obviously L(X U{a},Y) = L(X U{a}, V" U{b}).
Consider the corresponding optimal bipartite graph. By the restriction property, if we erase a and b
and their edges, we obtain a bipartite graph on (X', )”) which differs from an admissible graph of our
optimization problem by at most x edges. Using this new graphs yields

L(X,Y) < kdiam(Q)? + L(X U {a}, V" U {b}) = kdiam(Q)? + L(X U {a}, ).

This concludes the proof. O

6 Lower bounds, lower limits

6.1 Uniform distribution on a set

In order to motivate the sequel, we start with the simple case where f is an indicator function. The
lower bound is then a direct consequence of Theorem [[5 and Theorem 7l

Theorem 24. Let d > 2p > 0. Let L be a bipartite functional on RY satisfying the properties (H,),
(Rp), (Sp). Let @ C R? be a bounded set with positive Lebesque measure. Then

b

Proof. Theorem [T gives directly limsup EL(nlq)/n'~a < B, Vol(2). By translation and dilation in-
variance, we may assume without loss of generality that Q C [0,1]¢. Let Q. := [0,1]¢\ Q. Applying
Proposition [ for the partition [0,1]% = Q U €., gives after division by n'~?/¢

EL(nlpya) EL(nlg,) _ EL(nlg)

¥4 ¥4 — p
nl-d nl-d nl—d

+ 3Cdiam([0, 1])n¥ 3 (Vol(Q)% + vol(Qc)%).

Since d > 2p, letting n go to infinity gives

EL(nl EL(nl EL(nl
lim inf @ > lim M — limsup +§zc)
" nod " n-d n —d
> Br — BrVol(d) = B Vol(2),
where we have used Theorem [[H] for the limit and Theorem [I7 for the upper limit. 0

The argument of the previous proof relies on the fact that the quantity limn'"P/?EL(nlq) =
BrVol(9) is in a sense additive in . This line of reasoning does not pass to functions since f +— [ f 1-p/d
is additive only for functions with disjoint supports. The lower limit result requires more work for general
densities.

6.2 Lower limits for matchings

In order to establish a tight estimate on the lower limit, it is natural to try and reverse the partition
inequality given in Proposition This is usually more difficult and there does not exist a general
method to perform this lower bound. We shall first restrict our attention to the case of the matching
functional M,, with p > 0, we define in this subsection

L=M,.
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6.2.1 Boundary functional

Given a matching on the unit cube, one needs to infer from it matchings on the subcubes of a dyadic
partition and to control the corresponding costs. The main difficulty comes from the points of a subcube
that are matched to points of another subcube. In other words some links of the optimal matching cross
the boundaries of the cells. As in the book by Yukich [19], a modified notion of the cost of a matching is
used in order to control the effects of the boundary of the cells of a partition. Our argument is however
more involved, since the good bound () used by Yukich is not available for the bipartite matching.

We define
g=2""1A1.

Let S € R? and ¢ > 0. Given multisets X = {Xy,...,m} and J = {Y7,...,Y,} included in S we
define the penalized boundary-matching cost as follows

Lose(X1,..., XmiY1,...,Yy) (18)

= min AN = Yol + Y a(d(Xi, 08 +7) + 3 q(d(v;,08) +¢) b,

€A i€ A° jEB*®

where the minimum runs over all choices of subsets A C {1,...,m}, B C {1,...,n} with the same
cardinality and all bijective maps ¢ : A — B. When ¢ = 0 we simply write Lys. Notice that in our
definition, and contrary to the definition of optimal matching, all points are matched even if m # n. If
X and Y are independent Poisson point processes with intensity v supported in S and with finite total
mass, we write Log -(v) for the random variable Log (X, ).

The main interest of the notion of boundary matching is that it allows to bound from below the
matching cost on a large set in terms of contributions on cells of a partition. The following Lemma
establishes a superadditive property of Lys and it can be viewed as a counterpart to the upper bound
provided by Proposition

Lemma 25. Assume L = M,,. Let v be a finite measure on R? and consider a partition Q = Upep P of
a subset of RY. Then

diam(Q)P\/2v(R?) + EL(v) > ELaq(Iq -v) > >  ELop(Lp -v).
PeP
Proof. Let X = {X1,..., X;n}, Y = {Y1,...,Y,} be multisets included in Q and X' = { X, 41, ..., Xintm' |
YV ={Yai1,..-, Ynin } be multisets included in Q°. By considering an optimal matching of X UX” and
YUY, we have the lower bound

diam(Q)?m+m' —n—n'| + LX U X", Y UY') > Log(X,)).

Indeed, if 1 <1i < m and a pair (X;,Y,4;), is matched then |X; — Y,4,| > d(X;,0Q) and similarly for
a pair (X,,44,Y;), with 1 < j < n, | X4 — Y5 > d(Y;,0Q). The term diam(Q)?|m +m' —n — n/|
takes care of the points of X U Y that are not matched in the optimal matching of X U X’ and Y U )",
We apply the above inequality to X, ) independent Poisson processes of intensity I - v, and &7, ),
two independent Poisson processes of intensity Ige - v, independent of (X,Y). Then X U X', YUY
are independent Poisson processes of intensity v. Taking expectation and bounding the average of the
difference of cardinalities in the usual way, we obtain the first inequality.
Now, the second inequality will follow from the superadditive property of the boundary functional:

Log(X,¥) > > Lop(X N P,YNP). (19)
pPep

This is proved as follows. Let (A, B, o) be an optimal triplet for Lag (X, Y):

Lo(X,Y) =Y |Xi = YolP + Y qd(X:,0Q)" + Y qd(Y;,0Q)".

€A i€ A° JjEB®
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If z € @, we denote by P(z) the unique P € P that contains z. If P(X;) = P(Y,(;) we leave the term
| Xi — Y5 ()| unchanged. On the other hand if P(X;) # P(Y(;)), from Hélder’s inequality,

| Xi = Yoi)P > qd(X;,0P(X:))P + qd(Yo(iy, OP(Yo(i)))P-

Eventually, we apply the inequality
d(z,0Q) > d(z,0P(x))

in order to take care of the points in A° U B°. Combining these inequalities and grouping the terms
according to the cell P € P containing the points, we obtain that

Loq(X,Y) = Z Z |Xi = You) [P + Z qd(X;, OP)"
PeP \i€A; X;EP,Y,(;EP i€A; Xi€P,Y,(j¢P
Y. qd(Xi, 0Py + > qd(Y;, 0Py + Y qd(Y;,0P)
i€Ac; X, eP JEB; Y;€P, jé¢o({i; X;€P}) jEBS; Y;EP
> Y Lor(XNPYNP),
PeP
and we have obtained the inequality (I9). O

The next lemma will be used to reduce to uniform distributions on squares.
Lemma 26. Assume L = M,. Let u,p' be two probability measures on R with supports in Q and

n > 0. Then
ELoq(nu) < ELog(ny) + 4n diam(Q)” drv (u, 1)

Consequently, if f is a nonnegative locally integrable function on R?, setting o = fQ f/vol(Q), it holds

EL@Q(?’Lf]lQ) < EL@Q(?’La]lQ) + 2n diam(Q)p /Q |f($) — a| dx.

Proof. The functional Lyq satisfies a slight modification of property (R,) : for all multisets X', Y, X1, V1, Xa, Vo
in @, it holds

Log(X U X1, Y UN) < Lag(X UXs, YU o) + diam(Q)P (card(Xl) + card(Xs) + card(Qh) + card(yg)).

Indeed, we start from an optimal boundary matching of Ly (X U X2, Y UYs), we match to the boundary
the points of (X,)) that are matched to a point in (X2, )%s). There are at most card(Xs) 4+ card()s) such
points. Finally we match all points of (X1,)1) to the boundary and we obtain a suboptimal boundary
matching of Lyg(X U Xy, U Yq). This establishes the above inequality. The statements follow then
from the proofs of Proposition Bl and Corollary [ O

We will need an asymptotic for the boundary matching for the uniform distribution on the unit cube.
Let Q = [0,1]¢ and denote B
Laq(n) = ELaq(nlg).
Lemma 27. Assume L = M, and 0 < p < d/2, then
L
lim 9Q (n)

1—2
n—oo n d

= B,
where B > 0 is a constant depending on p and d.

Proof. Let m > 1 be an integer. We consider a dyadic partition P of @ into m? cubes of size 1/m. Then,
Lemma 25 applied to the measure nljy jja(x) dz gives

IiaQ(n) > ZELaq(nlqﬁ[O,l]d)-
qeP

However by scale and translation invariance, for any ¢ € P we have ELgy(n1n0,17¢) = m PELaq (nm=1g).
It follows that - -
Lag (n) > md_pLaQ (nm_d).

The proof is then done as in Theorem [[3] where superadditivity here replaces subadditivity there. [l
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6.2.2 General absolutely continuous measures
We are ready to state and prove

Theorem 28. Assume L = M, and 0 < p < d/2. Let f: R? — R* be an integrable function. Then

(f) 1%
. > By, f

lim inf

Proof. Assume first that the support of f is bounded. By a scaling argument, we may assume that the
support of f is included in @ = [0, 1]%. The proof is now similar to the one of Theorem [[7l For £ € N,
we consider the partition P, of [0,1]% into 2°¢ cubes of side-length 27¢. Let k € N* to be chosen later.
For P € Py, ap denotes the average of f over P. Applying Lemma 28 Lemma 26 and homogeneity, we
obtain

2d§4/n/f+EL(nf) > ELog(nf) > Z ELsp(nflp)
PePy

V

z Z <EL6P(naP]1P) — 2nd?* 2_kp/ |f04P|>
PePy P

= > (z—kPELaQ(napz—kdﬂQ)md% 2—’w/ |fap|).
PePy P

Setting as before fi, = > pop aplp and h(t) = EaQ(t)/t% where Log(t) = ELsg(t1g), the previous
inequality reads as

onk- %dg‘//f—i— ]EL(”f) > ELaq(nf) = /h(nrkdfk)f,i‘% —2d? nﬁrkl’/lf—fkl-

As in the proof of Theorem [[7l we may choose k = k(n) depending on n in such a way that lim,, k(n) =

+00, lim, /#2750 = 450 and lim,, na 2+ ([ If=fr@)|)™ = 0. For such a choice, since liminf;_, o h(t) >
S5 by Lemma 27 and a.e. limy, fr = f, Fatou’s lemma ensures that

= liminf/ B2 * A p Y E > ) /fl"
" {r>0}

n

lim inf / h(n27Kmd g ) f

Our statement easily follows.

Now, let us address the general case where the support is not bounded. Let £ > 1 and Q = [—¢,¢]%.

By Lemma [25]
2diam(Q)"y /n/f +EL(nf) > ELapg(nflg).

Also, the above argument has shown that
EL 1
lim inf ——220 "9 ”f Q) - g, / Fi-5,

We deduce that for any Q = [/, £]%,

lim inf

n )zﬂz/Qflﬁ.

Taking ¢ arbitrary large we obtain the claimed lower bound. (|
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6.2.3 Dealing with the singular component

In this section we explain how to extend Theorem 2§ from measures with densities to general measures.
Given a measure u, we consider its decomposition = a4 + s into an absolutely continuous part and
a singular part.

Our starting point is the following lemma, which can be viewed as an inverse subbadditivity property.

Lemma 29. Letp € (0,1] and L = M,,. Let X1, Xy, V1,V be four finite multisets included in a bounded
set Q. Then

L(X1, M) < L(X U Xy, Y1 Uds) + L(AXs, Vo) + diam(Q)p(|X1(Q) - (Q) +2|X(Q) — y2(Q)|)-

Proof. Let us start with an optimal matching achieving L(X; U X2, Yy U )») and an optimal matching
achieving L(X5, V). Let us view them as bipartite graphs G 2 and G2 on the vertex sets (X3 UXa, Y1UYs)
and (X, )s) respectively (note that if a point appears more than once, we consider its instances as
different graph vertices). Our goal is to build a possibly suboptimal matching of X; and Y;. Assume
without loss of generality that X1 (Q) < V1(Q). Hence we need to build an injection from o : X7 —
and to upper bound its cost )y, | —o(2)[P.

To do this, let us consider the graph G obtained as the union of G1 2 and G (allowing multiple edges
when two points are neighbours in both graphs). It is clear that in G the points from X; and ) have
degree at most one, while the points from X> and )» have degree at most 2. For each x € X}, let us
consider its connected component C(x) in G. Because of the above degree considerations (and since no
point is connected to itself in a bipartite graph) it is obvious that C(z) is a path.

It could be that C'(z) = {z}, in the case when z is a leftover point in the matching corresponding to
Gh,2. This means that z is a point in excess and there are at most |X;(Q) + X2(Q) — Q1 (Q) + V2(Q))]
of them.

Figure 1: The three possibilities for the path C(z). In blue, G 2, in red Ga, the points in X} U Xy are
represented by a cross, points in ); U Vs, by a circle.

Consider now the remaining case, when C(x) is a non trivial path. Its first edge belongs to Gy 2. If
there is a second edge, it has to be from G2 (since G 2 as degree at most one). Repeating the argument,
we see that the edges of the path are alternately from G2 and from G>. Note also that the successive
vertices are alternately from X; U X and from Yy U Vs (see Figure ). There are three possibilities:

e The other end of the path is a point y € ;. In this case we are done, we have associated a point
y € Y1 to our point x € X;. By the triangle inequality and since (a + b)? < aP + bP due to the
assumption p < 1, |x — y|? is upper bounded by the sum of the p-th powers of the length of the
edges in C(x).

e The other end of the path is a point y € V,. The last edge is from G 2. So necessarily, y has
no neighbour in G3. This means that it is not matched. There are at most |X2(Q) — V2(Q)| such
points in the matching G.

e The other end of the path is a point 2’ € X5. The last edge is from G3. So necessarily, 2’ has no
neighbour in G 2. This means that it is not matched in G 2. As already mentionend there are at

most |X1(Q) + A2(Q) — (Vi(Q) + V2(Q))| such points.
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Eventually we have found a way to match the points from Xj, apart maybe |X5(Q) — V2(Q)| + |X1(Q) +
X2(Q) — (1 (Q) + V2(Q))| of them. We match the latter points arbitrarily to (unused) points in )}y and
upper bound the distances between matched points by diam(Q). O

As a direct consequence, we obtain:

Lemma 30. Let py and po be two finite measures supported in a bounded set Q. Let p € (0,1] and
L = M), be the bipartite matching functional. Then

EL(p1) < EL(p1 + p2) + EL(p2) + 3 diam(Q)? (v/ 111 (Q) + v/ 2(Q)) -

Proof. Let Xy, X5, V1, Yo be four independent Poisson point processes. Assume that for i € {1,2}, X;
and ); have intensity measure p;. Consequently X7 U X5 and ) U )s are independent Poisson point
processes with intensity i + po. Applying the preceeding lemma 29 and taking expectations yields

EL(p1) < EL(u1 + p2) + EL(p2) 4 2diam(Q)? (E|X1 (Q) — V1(Q)] + E|X2(Q) — 1a(Q)]).

As usual, we conclude using that

E|%(Q) ~ Y:(Q)] < E((4(Q) — Yi(Q)?) = V2var(Xi(Q)) = V2u(Q).
[l

Theorem 31. Assume that d € {1,2} and p € (0,d/2), or that d > 3 and p € (0,1]. Let L = M, be the
bipartite matching functional. Let ju be a finite measure on R with bounded support. Let f be the density

of the absolutely continuous part of u. Assume that there exists o > d27d§p such that [ |z|*du(z) < +o0.
Then

1—

EL .
Jim inf 2L S g, [ ik
n n d Rd

Moreover if f is proportional to the indicator function of a bounded set with positive Lebesque measure

1imEL1(n£L) :ﬂL/ fi-a.
—d R4

n n

Proof. Note that in any case, p < 1 is assumed. Let us write p = pge + ps where dpg.(x) = f(x)dz is
the absolutely continuous part and pg is the singular part of pu.

The argument is very simple if u has a bounded support: apply the previous lemma with p1 = npg.
and ps = nps. When n tends to infinity, observing that /n is negligible with respect to n'~ 4, we obtain
that

EL(npige . . .EL . EL(nus
lim inf % < lim inf # + lim sup Emj )
n n-d n n-d n n-—d

Observe that the latter upper limit is equal to zero thanks to Theorem applied to a purely singu-
lar measures. Eventually liminf, % > B Jga f 1= by Theorem 28 about absolutely continuous
measures.

If f is proportional to an indicator function, we simply use scale invariance and Theorem 24] in place
of Theorem 28

Let us consider the general case of unbounded support. Let Q = [, £]? where £ > 0 is arbitrary. Let
Xy, V1, Xa, Vo be four independent Poisson point processes, such that X7 and ) have intensity measure
nlqg - fec, and Xy and Vs have intensity measure n(us + 1ge - tac)- It follows that Xy U Xy and Yy U Vs
are independent Poisson point processes with intensity nu. Set T := max{|z|; z € X3 UXo U Y1 U},
Applying Lemma 29 gives

L(X1,00) S L(X U X, V1 Uds) + L(AXs, Vo) + cpr(|card(X1) — card(Q1)| — |card(Xy) — card(y2)|).

Taking expectations, applying the Cauchy-Schwarz inequality twice and Lemma [ (note that o > 2p)
gives

EL(nf]lQ) < EL(np) + EL(”(US + ]IQC,UaC)) +¢p E[TQP] < 2np14c(Q) + \/2n(US(Rd) + ,UaC(QC>>)

< EL(np) + EL(n(ps + Lgeptac)) + c;n%r%.
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2dp

Since a > -=L- we obtain
P
EL EL(nf1 EL s F 15 - pac) )
lim inf (nff) > lim inf (nipr) — lim sup (np Q A > BL/ fl fl_aa
n nl—d n nl—a n n'=a Q°

where we have used Theorem for the lower limit for bounded absolutely continuous measures and
Theorem [[J for the upper limit. Recall that Q = [—¢, £]%. Tt remains to let £ tend to infinity. O

Actually, using classical duality techniques (which are specific to the bipartite matching) we can
derive the following improvement of Lemma B0, which can be seen as an average monotonicity property:

Lemma 32. Let p € (0,1] and L = M. Let p1 and ps2 be two finite measures supported on a bounded
subset Q@ C R%. Then

EL(p1) < EL(p1 + p2) + 3diam(Q)P (v/111(Q) + v/ 12(Q))-

Proof. Since p € (0,1], the unit cost c(z,y) := |z — y|? is a distance on R%. The Kantorovich-Rubinstein
dual representation of the minimal matching cost (or optimal transportation cost) is particularly simple

in this case (see e.g. [I0L 18] [16]): for {z1,...,zn}, {y1,...,yn} two multisets in Q,
L({z1, ...zt {y1, - yn}) = sup Zf ;) Yi)

feLipy o 7

where Lip, , denotes the set of function f : Q — R which are 1-Lipschitzian for the distance c(z,y) (hence
they are p-Holderian for the Euclidean distance) and vanish at a prescribed point g € @. Observe that
any function in Lip, ( is bounded by diam(Q)? pointwise.

Let X = {X1,..., XN, }and Y = {Y1, ..., Yn, } be independent Poisson point processes with intensity
1 of finite mass and supported on a set @ of diameter D < +oc0. By definition, on the event {N; < Na},

L(X - inf LUX1<i<N}{Y,.jeA
( ,y) Ac{1,..., Ngl]r};card(A):Nl ({ =v= 1} { id € })

= inf su X;) — Y.
AcC{1,...,Na};card(A)=N; feLiII?Lo Z f( ) Z f( j>

""" i<Ny jeA

Y]

sup | D f(X) = > f(Y;) | — DPINy — Ny

FELiPLo \ <N, J<N,

where we have used Kantorovich-Rubinstein duality to express the optimal matching of two samples of
the same size and used that every f € Lipy o satisfies | f| < DP pointwise on (). A similar lower bound
is valid when N7 > N». Hence, taking expectation and bounding E|N; — Na| in terms of the variance of
the number of points in one process, one gets

EL(n) >E sup | Y f(Xi) = Y f(¥;) | = D*/2Jul. (20)

felirro \i<n, J<N,

A similar argument also gives the following upper bound

EL(n) <E sup | D> f(X)— > f(¥;) | +D"\/2[ul. (21)

felirro \i<n, J<N,

Let X1, Ao, V1, V2 be four independent Poisson point processes. Assume that for i € {1,2}, A; and );
have intensity u;. As already mentioned, X} U X5 and )i U )» are independent with common intensity
1+ po. Given a compact set @ containing the supports of both measures, and zy € Q@ we define the set

Lip, o. Using (@0),
EL(p1 + p2) = EL(X U X, V1 U D)

> E sup | Y fle) = D> fly)+ D> flwe) = > flya) | = D"V2lu + po]

FELip1 0 r1E€X] Y1EM1 T2EX> Y2E€Y2
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Now we use the easy inequality Esup > sup E when E is the conditional expectation given Xj,);. Since
(Xy,)s) are independent from (A7, );), we obtain

EL(p1 + p2) + DPA/2|p1 + pe

vV
=
)
S
(]
—
B
\
(]
=
=
—
+
=
/N
(]
~
—~
S
~
\
(]
~
<
<
~

FeLipyo T1E€EX Y1EN T2EX2 Y2€Y2
= E sup | Y fle)— Y, fly)
FeLipyo T1E€EX] Y1E€EN
> EL(m) = DPv/2|pml,
where we have noted that the inner expectation vanishes and used ([21I). The claim easily follows. O

6.3 Euclidean combinatorial optimization

Our proof for the lower bound for matchings extends to some combinatorial optimization functionals L
defined by ([I3). In this paragraph, we explain how to adapt the above argument at the cost of ad-hoc
assumptions on the collection of graphs (G, )nen. As motivating example, we will treat completely the
case of the bipartite traveling salesperson tour.

6.3.1 Boundary functional

Let S C R% and ,p > 0. Set ¢ = 2P~ A 1. In what follows, p is fixed and will be omitted in most places
where it would appear as an index. Given multisets X = {X;,..., X,} and ¥ = {Y71,...,Y,} included
in R?, we first set

Be=mnd Y ey
(i,5)€[n]2:{i,n+j}€G
where
| —yl? if  xyes,
- 0 if T,y &5,
ds.ep(,y) = g(dist(z, S¢)P +¢eP) if 2e€S y¢gS (22)
gq(dist(y, S)P +e?) if yeS x¢gs
Now, if X and ) are in S, we define the penalized boundary functional as
Lose(X,Y)= min L% (¥ UAYUB), (23)

A,BCSe

where the minimum is over all multisets A and B in S¢ such that card(YUA) = card(YUB) > k9. When
e = 0 we simply write Lgs. The main idea of this definition is to consider all possible configurations
outside the set S but not to count the distances outside of S (from a metric view point, all of S¢ is
identified to a point which is at distance ¢ from S).

The existence of the minimum in (23)) is due to the fact that LY ¢(X U A, YU B) can only take finitely
many values less than any positive value (the quantities involved are just sums of distances between points
of X, and of their distances to S¢). Notice that definition ([23)) is consistent with the definition of the
boundary functional for the matching functional M, given by ([I8)). If X and ) are independent Poisson
point processes with intensity v supported in S and with finite total mass, we write Lag () for the
random variable Lgg (X,)). Also note that ds o p(z,y) < |z —y|P. Consequently if card(X') = card())
then

LYs(X,Y) < L(X,Y). (24)

The next lemma will be used to reduce to uniform distributions on squares.

Lemma 33. Assume (A1-A5). Let p,u’ be two probability measures on RY with supports in Q and
n > 0. Then, for some constant ¢ depending only on K, ko,

ELoq(nu) < ELag(ny') + 2en diam(Q)? drv (p, 1)
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Consequently, if f is a non-negative locally integrable function on R, setting oo = fQ f/vol(Q), it holds

ELsg(nflg) < ELsg(nalg) + cndiam(Q)? /Q |f(z) — a|du.

Proof. The functional Lyq satisfies a slight modification of property (R,) : for all multisets X', Y, X1, Vi, Xo, Vo
in @, it holds

Log(XUX1, YUY1) < Log(XUXy, YUY, )+Cdiam(Q)? (card(?(l)+card(X2)+card(y1)+card(y2)), (25)

with C' = C(k, ko). The above inequality is established as in the proof of Lemma[23l Indeed, by linearity
and symmetry we should check (I5) and (7)) for Log. To prove (&), we consider an optimal triplet
(G, A, B) for (X,)) and apply the merging property (A4) to G with the empty graph and m =1 : we
obtain a graph G” and get a triplet (G”, A, BU {b}) for (X U{a},)), where b is any point in Q. To
prove (), we now consider an optimal triplet (G, A, B) for (X U{a},)) and move the point a to the a’
in 9Q in order to obtain a triplet (G, AU {da’}, B) for (X,)).

With (23] at hand, the statements follow from the proofs of Proposition 8 and Corollary [l O

The next lemma gives a lower bound on L in terms of its boundary functional and states an important
superadditive property of Lyg.

Lemma 34. Assume (A1-A5). Let v be a finite measure on R and consider a partition Q = Upep P
of a bounded subset of RY. Then, if ¢ = 4k(1 + ko), we have

cy/v(R4) diam(Q)” + EL(v) > ELoq(lq - v) > Y ELop(1p - v).
pePp

Proof. We start with the first inequality. Let X = {X1,..., X,,},Y = {Y1,...,Y,} be multisets included
in Qand X' = {Xpm41,- s Xmtm bs V' = {Ynt1,. .., Yoin } be multisets included in Q. First, let us
show that

cilm+m’ —n—n/|diam(Q)? + L(X U X", Y UY') > Lag(X, V), (26)

with ¢; = k(1 4 ko). To do so, let us consider an optimal graph G for L(X U X', Y UY’). It uses
all the points but |m +m’ — n — n/| points in excess. We consider the subsets Xy € X and My C Y
of points that are used in G and belong to (). By definition there exist subsets A, B C Q¢ such that
card(Xp U A) = card(Yp U B) and L(X U X', YUY) = L(XyU A, Yo U B). By definition of the boundary
functional and using (24]),

Log (X, Vo) < LgQ(XO UA M UB) < L(AHAUA Y UB)=LXUX ,YUY).

Finally, since there are at most [n +n’ —m — m/| points in X U which are not in Xy U )y (i.e. points
of @ not used for the optimal ), the modified (R,]) property given by Equation (25) yields (28). We
apply the latter inequality to X, ) independent Poisson processes of intensity I - v, and X”, ), two
independent Poisson processes of intensity Ig- - v, independent of (X,)). Then X U X', YUY are
independent Poisson processes of intensity v. Taking expectation, we obtain the first inequality, with
c=4c.

We now prove the second inequality. As above, let X = {X1,..., X}, Y = {Y1,...,Y,} be multisets
included in Q. Let G € Gy be an optimal graph for Lyg(X,Y) and A = {X;41, -, Xk}, B =
{Yp41,--+,Ys} be optimal sets in Q°. Given this graph G and a set S, we denote by EY the set of edges
{i,k+j} of G such that X; € S and Y; € S, by E{ the set of edges {i,k+ j} of G such that X; € S and
Y; € S¢ and by E% the set of edges {4,k + j} of G such that X; € S¢ and Y; € S. Then by definition of
the boundary functional

Log(X,Y) = Ljo(XUAYUDB)
= > Xi-YP+ Y qdXn@P+ Y qd(Y;, Q).
{i,k+i}e B {i.k+iYeBy {i,k+i}e B

Next, we bound these sums from below by considering the cells of the partition P. If z € @, we denote
by P(z) the unique P € P that contains x.
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If an edge e = {i,k+ j} € G is such that X;,Y; belong to the same cell P, we observe that e € EY%,
and we leave the quantity |X; — Y;|” unchanged.
If on the contrary, X; and Y; belong to different cells, from Holder inequality,

[Xi = Yj|P > qd(X;, P(X)%)P + g d(Yj, P(Y;))".

Eventually, for any boundary edge in Eég, we lower bound the contribution d(X;, Q°)? by d(X;, P(X;)¢)P
and we do the same for Eé Combining these inequalities and grouping the terms according to the cell
P € P to which the points belong,

Loogx.y) > Y| X x-yP+ Y gqdx.oPy+ Y qd(v;,0P)

PeP \{i,k+j}€EY {i,k+j}€E} {i,k+j}eE}
For a given cell P, set A’ = (X UA)NP°and B’ = (YU B) N P°. We get
Y. IXi-YiP+ Y0 qdXioPP+ Y qd(Y;0P)"
{i,k+j}EEY {i,k+j}eEL {ik+j}€E2
= LY ((XNPY)UA, (YNP)UB) > Lap(XNP,YNP).

So applying these inequalities to X and Y two independent Poisson point processes with intensity v1g
and taking expectation, we obtain the claim. O

Let Q = [0,1]¢ and denote B
Laq(n) = ELaq(nlq).
Lemma 35. Assume (A1-A5). Let Q C R? be a cube of side-length 1. If 0 < 2p < d, then
Log(n)

. ’
lim —— = 01,
n—oo n d

where B > 0 is a constant depending on L, p and d.

Proof. The proof is the same than the proof of Lemma 27 with Lemma [34] replacing Lemma O

6.3.2 General absolutely continuous measures with unbounded support

Theorem 36. Assume (A1-A5) and that 0 < 2p < d. Let f : R? — Rt be an integrable function. Then

EL p
el [

lim inf

n n
Proof. The proof is now formally the same than the proof of Theorem 2§ invoking Lemmas B3] [34] and
in place of Lemmas 26 25 and 27 respectively. O

Remark 6. Finding good lower bounds for a general bipartite functional L on R? satisfying the properties
(Hp)s (Rp), (Sp) could be significantly more difficult. It is far from obvious to define a proper boundary
functional Lag at this level of generality. However if there exists a bipartite functional Lgg on R
indexed on sets Q C R? such that for any t > 0, ELyio)(nliq) = tPELyg(nt?ly) and such that the
statements of Lemmas [34] B3] B3l hold, then the statement of Theorem 28 also holds for the functional
L. Thus, the caveat of this kind of techniques lies in the good definition of a boundary functional Lg.

6.3.3 Dealing with the singular component. Example of the traveling salesperson problem.

Let p € (0,1]. We shall say that a bipartite functional L on R? satisfies the inverse subadditivity property
(Zp) if there is a constant C' such that for all finite multisets Xy, Vi, X2, Vs included in a bounded set
Q CRY,

L(X0, 1) < L(X, U Xy, 1 UD) + L(Xy, Vo) + Cdiam(Q)P (1 + |A1(Q) — M (Q)] + 1X(Q) — V2(Q)]).
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Although it makes sense for all p, we have been able to check this property on examples only for p € (0, 1].
Also we could have added a constant in front of L(Xs, )s).

It is plain that the argument of Section readily adapts to a functional satisfying (Z,), for
which one already knows a general upper limit result and a limit result for absolutely continuous laws.
It therefore provides a limit result for general laws. In the remainder of this section, we show that
the traveling salesperson bipartite tour functional L = T,, p € (0,1] enjoys the inverse subadditivity
property. This allows to prove the following result:

Theorem 37. Assume that either d € {1,2} and 0 < 2p < d, ord >3 and p € (0,1]. Let L =T, be the

traveling salesperson bipartite tour functional. Let p be a finite measure such that for some a > d{LSP,

[ |z|*dp < +o00. Then, if f is a density function for the absolutely continuous part of p,

EL(nu _p
1(_5) > By froa
Rd

lim inf
n n

Moreover if f is proportional to the indicator function of a bounded set with positive Lebesgue measure

EL D
tim S0 g, [ g
—d R4

n n

All we have to do is to check property (Z,). More precisely:
Lemma 38. Assume p € (0,1] and L = T,. For any set X1, Xs, Y1, Y2 in a bounded set Q

L(X1,01) < L(X1UX, V1 Us) + L(&Xs, Db)
+ 2diam(Q)? (1 4 |card(X;) — card(D1)| + |card(Xe) — card(D2)]) -

Proof. We may assume without loss of generality that card(X;) Acard(Y;) > 2, otherwise, L(X;, Y1) =0
and there is nothing to prove. Consider an optimal cycle Gy o for L(X; U X5, Y1 UYs). In Gy 2, m =
|card (A1) + card (Y ) — card(Xa) — card()e)| < |card(X;) — card()1)| + |card(X2) — card()s )| points have
been left aside. We shall build a bipartite tour Gy on (X],Y;), the points of (X3, )) that have not been
left aside by G 2.

X\O\/ O/

Figure 2: In blue, the oriented cycle Gy 2, in red G, in black G} 5. The points in X} UX, are represented
by a cross, points in Y1 U )» by a circle.

We consider an optimal cycle Go for L(X3,Y5), where (X5, V5) are the points of (Xa,)s) that have
not been left aside by G1,2. We define (X3, V4) C (X3,Y5) as the sets of points that are in Ga. Since
card(X]) + card(X5) = card()y) + card()%), we get card(X]) — card()]) = —card(X3) + card(V5). It
implies that the same number of points from the opposite type need to be removed in (X],)]) and
(X4,Y%) in order to build a bipartite tour. We fix an orientation on G 2. Assume for example that
card(X3) > card())), if a point x € X\ XY, we then remove the next point y on the oriented cycle G o
of Yi. Doing so, this defines a couple of sets (X{, Vy) C (X7, Y1) of cardinality card(X]) A card();) and

L(X[, 1) < L(X], V).
We define G , as the cycle on (X" U &Y, V" U Vy) obtained from G o by saying that the point after

r € (X UAY, Y UYy) in the oriented cycle G 5 is the next point y € (X" U A, Y UYY) in Gy 2. By
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construction, G , is a bipartite cycle. Also, since p € (0, 1], we may use the triangle inequality : the
distance between two successive points in the circuit G 5 is bounded by the sum of the length of the
intermediary edges in G12. We get

LX) UXY, V] UYY) < LA U Xy, V1 Us).

Now consider the (multi) graph G = G , U G2 obtained by adding all edges of G} , and Go. This
graph is bipartite, connected, and points in (X}, );’) have degree 2 while those in (X4, %) have degree 4.
Let k be the number of edges in G, we recall that an eulerian circuit in G is a sequence E = (e1, -+ , ex)
of adjacent edges in GG such that ey is also adjacent to e; and all edges of G appears exactly once in the
sequence E. By the Euler’s circuit theorem, there exists an eulerian circuit in G. Moreover, this eulerian
circuit can be chosen so that if e; = {u;—1,u;} € Go then e;41 = {u;11,u;} € G 5 with the convention
that exy1 =ej.

This sequence E defines an oriented circuit of points. Now we define an oriented circuit on (X7, V'),
by connecting a point x of (X{,Y{) to the next point y in (X]’,)}) visited by the oriented circuit F.
Due to the property that e; € G2 implies e;41 € G, if © € X{' then y € )} and conversely, if z € )}
then y € X{". Hence, this oriented circuit defines a bipartite cycle Gy in (X7, V{).

By the triangle inequality, the distance between two successive points in the circuit G is bounded
by the sum of the length of the intermediary edges in E. Since each edge of G appears exactly once in
E, it follows that

3

L(X{, V1) < L(X) U X, Y1 UYs) + L(X, Vs).

To conclude, we merge arbitrarily to the cycle Gy the remaining points of (X1, );), there are at most m
of them (regularity (R,) property). O

7 Variants and final comments

As a conclusion, we briefly discuss variants and possible extensions of Theorem 2l For d > 2p and when
p is the uniform distribution on the cube [0, 1]%, there exists a constant 8,(d) > 0 such that almost surely

nan;On%_lMp({Xl,...,Xn},{Yl,...,Yn}) = B,(d).
A natural question is to understand what happens below the critical line d = 2p, i.e. when d < 2p. For
example for d = 2 and p = 1, a similar convergence is also expected in dimension 2 with scaling vnInn,
but this is a difficult open problem. The main result in this direction goes back to Ajtai, Komlés and
Tusnédy [I]. See also the improved upper bound of Talagrand and Yukich in [I7]. In dimension 1, there
is no such stabilization to a constant.

Recall that )
1 > 1 n 1 n
(B i) = (130 1300 ).
i=1 i=1

where W), is the L,-Wasserstein distance. A variant of Theorem [3] can be obtained along the same lines,

concerning the convergence of
1 1 <
ndW, | — ox,, ,
: ( o u)

where 4 is the common distribution of the X;’s. Such results are of fundamental importance in statistics.
Also note that combining the triangle inequality and Jensen inequality, it is not hard to see that

B (23 0 n) < B (2 S an, 23 06) < omma (230w 0),
i=1 i=1 i=1 i=1

(similar inequalities hold for p > 1). Hence it is clear that the behaviour of this functional is quite close
to the one of the two-sample optimal matching. However, the extension of Theorem 2 would require
some care in the definition of the boundary functional.

Finally, it is worthy to note that the case of uniform distribution for L = M, has a connection with
stationary matchings of two independent Poisson point processes of intensity 1, see Holroyd, Pemantle,

32



Peres and Schramm [6]. Indeed, consider mutually independent random variables (X;);>1 and (Yj);>1

having uniform distribution on @ = [~1/2,1/2]%. Tt is well known that for any x in the interior of Q,
the pair of point processes

1 ¢ I

— 0 1 — 0 1

converges weakly for the topology of vague convergence to (21, Z3), where Z; and =Z» are two independent
Poisson point processes of intensity 1. Also, we may write

p

2_ n " 1o 1 1
na T EM,({X:}iiy, {Yidis,) = EEZ ’W(Xi =) = ni (Yo, ) — @)
1=1

where o, is an optimal matching. Now, the fact that for 0 < p < 2d, lim,, ngflEMp({Xi}?zl, Vi) =
Bp(d) implies the tightness of the sequence of matchings o, and it can be used to define a stationary
matching o on (Z1,Z2), see the proof of Theorem 1 (iii) in [6] for the details of such an argument. In
particular, this matching o will enjoy a local notion of minimality for the L,-norm, as defined by Holroyd
in [5] (for the Li-norm). See also related work of Huesmann and Sturm [7].
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